Rahman, M. A. et al. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 38, 22–32. https://doi.org/10.1016/j.ufug.2018.11.002 (2019).
Google Scholar
Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban floor runoff by means of nature-based options – An evaluation on the micro-scale. Environ. Res. 157, 135–144. https://doi.org/10.1016/j.envres.2017.05.023 (2017).
Google Scholar
Barron, O. V., Barr, A. D. & Donn, M. J. Effect of urbanisation on the water stability of a catchment with shallow groundwater. J. Hydrol. 485, 162–176. https://doi.org/10.1016/j.jhydrol.2012.04.027 (2013).
Google Scholar
Rosenzweig, B. R. et al. The worth of urban flood modeling. Earth’s Future 9, e2020EF001739. https://doi.org/10.1029/2020EF001739 (2021).
Google Scholar
Pauleit, S., Fryd, O., Backhaus, A. & Jensen, M. B. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 1–29 (Springer, 2020).
Rahman, M. A. et al. Traits of bushes for cooling urban warmth islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).
Google Scholar
Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree cover cowl and impervious surfaces scale back daytime urban warmth throughout summer season. Proc. Natl. Acad. Sci. USA 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).
Google Scholar
Waldrop, M. M. News function: The quest for the sustainable metropolis. Proc. Natl. Acad. Sci. 116, 17134–17138. https://doi.org/10.1073/pnas.1912802116 (2019).
Google Scholar
Cleugh, H. A., Bui, E., Simon, D., Xu, J. & Mitchell, V. G. The Impact of Suburban Design on Water Use and Microclimate (2005).
Chan, F. Okay. S. et al. “Sponge City” in China—A breakthrough of planning and flood danger management within the urban context. Land Use Policy 76, 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005 (2018).
Google Scholar
Morgan, R. P. C. Soil Erosion and Conservation (Wiley, 2005).
Xu, C. et al. Surface runoff in urban areas: The position of residential cowl and urban development kind. J. Clean. Prod. 262, 121421. https://doi.org/10.1016/j.jclepro.2020.121421 (2020).
Google Scholar
Ostoić, S. Okay. & van den Bosch, C. C. Okay. Exploring world scientific discourses on urban forestry. Urban For. Urban Green. 14, 129–138. https://doi.org/10.1016/j.ufug.2015.01.001 (2015).
Google Scholar
Rahman, M. A. et al. Tree cooling results and human thermal consolation beneath contrasting species and websites. Agric. For. Meteorol. 287, 107947. https://doi.org/10.1016/j.agrformet.2020.107947 (2020).
Google Scholar
Rötzer, T., Rahman, M. A., Moser-Reischl, A., Pauleit, S. & Pretzsch, H. Process primarily based simulation of tree development and ecosystem providers of urban bushes beneath current and future local weather situations. Sci. Total Environ. 676, 651–664. https://doi.org/10.1016/j.scitotenv.2019.04.235 (2019).
Google Scholar
Grote, R. et al. Functional traits of urban bushes: Air air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550. https://doi.org/10.1002/fee.1426 (2016).
Google Scholar
Pace, R. et al. A single tree mannequin to persistently simulate cooling, shading, and air pollution uptake of urban bushes. Int. J. Biometeorol. 65, 277–289. https://doi.org/10.1007/s00484-020-02030-8 (2021).
Google Scholar
Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the advantages of urban forest methods as a element of the inexperienced infrastructure stormwater remedy community. Ecohydrology https://doi.org/10.1002/eco.1813 (2017).
Google Scholar
Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients beneath the shade of two contrasting urban tree species throughout differing kinds of summer season days. Sci. Total Environ. 633, 100–111. https://doi.org/10.1016/j.scitotenv.2018.03.168 (2018).
Google Scholar
Rahman, M. A., Smith, J. G., Stringer, P. & Ennos, A. R. Effect of rooting situations on the expansion and cooling capacity of Pyrus calleryana. Urban For. Urban Green. 10, 185–192. https://doi.org/10.1016/j.ufug.2011.05.003 (2011).
Google Scholar
Schellekens, J., Scatena, F. N., Bruijnzeel, L. A. & Wickel, A. J. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. J. Hydrol. 225, 168–184. https://doi.org/10.1016/S0022-1694(99)00157-2 (1999).
Google Scholar
Guevara-Escobar, A., González-Sosa, E., Véliz-Chávez, C., Ventura-Ramos, E. & Ramos-Salinas, M. Rainfall interception and distribution patterns of gross precipitation round an remoted Ficus benjamina tree in an urban space. J. Hydrol. 333, 532–541. https://doi.org/10.1016/j.jhydrol.2006.09.017 (2007).
Google Scholar
Xiao, Q. F. & McPherson, E. G. Surface water storage capability of twenty tree species in Davis, California. J. Environ. Qual. 45, 188–198. https://doi.org/10.2134/jeq2015.02.0092 (2016).
Google Scholar
Xiao, Q. F., McPherson, E. G., Ustin, S. L. & Grismer, M. E. A new method to modeling tree rainfall interception. J. Geophys. Res. Atmos. 105, 29173–29188. https://doi.org/10.1029/2000jd900343 (2000).
Google Scholar
Carlyle-Moses, D. E. & Gash, J. H. C. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions (eds Levia, D. F. et al.) 407–423 (Springer, 2011).
Google Scholar
Hirano, T. et al. The distinction within the short-term runoff attribute between the coniferous catchment and the deciduous catchment: The results of storm dimension on storm technology processes of small forested catchment. J. Jpn. Soc. Hydrol. Water Resour. 22, 24–39. https://doi.org/10.3178/jjshwr.22.24 (2009).
Google Scholar
Chandler, Okay. R. & Chappell, N. A. Influence of particular person oak (Quercus robur) bushes on saturated hydraulic conductivity. For. Ecol. Manage. 256, 1222–1229. https://doi.org/10.1016/j.foreco.2008.06.033 (2008).
Google Scholar
Stewart, I. D. A systematic evaluation and scientific critique of methodology in fashionable urban warmth island literature. Int. J. Climatol. 31, 200–217. https://doi.org/10.1002/joc.2141 (2011).
Google Scholar
Beck, H. E. et al. Present and future Köppen-Geiger local weather classification maps at 1-km decision. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).
Google Scholar
Moreno-de las Heras, M., Nicolau, J. M., Merino-Martín, L. & Wilcox, B. P. Plot-scale results on runoff and erosion alongside a slope degradation gradient. Water Resour. Res. 46, W04503. https://doi.org/10.1029/2009WR007875 (2010).
Google Scholar
Wu, L., Peng, M., Qiao, S. & Ma, X.-Y. Effects of rainfall depth and slope gradient on runoff and sediment yield traits of naked loess soil. Environ. Sci. Pollut. Res. 25, 3480–3487. https://doi.org/10.1007/s11356-017-0713-8 (2018).
Google Scholar
Rutter, A. J., Kershaw, Okay. A., Robins, P. C. & Morton, A. J. A predictive mannequin of rainfall interception in forests, 1. Derivation of the mannequin from observations in a plantation of Corsican pine. Agric. Meteorol. 9, 367–384. https://doi.org/10.1016/0002-1571(71)90034-3 (1971).
Google Scholar
Gash, J. H. C. An analytical mannequin of rainfall interception by forests. Q. J. R. Meteorol. Soc. 105, 43–55. https://doi.org/10.1002/qj.49710544304 (1979).
Google Scholar
Véliz-Chávez, C., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Becerril-Pia, R. & Ramos-Salinas, N. M. Canopy storage implications on interception loss modeling. Am. J. Plant Sci. 05, 3032–3048. https://doi.org/10.4236/ajps.2014.520320 (2014).
Google Scholar
Fan, J., Oestergaard, Okay. T., Guyot, A. & Lockington, D. A. Measuring and modeling rainfall interception losses by a local Banksia woodland and an unique pine plantation in subtropical coastal Australia. J. Hydrol. 515, 156–165. https://doi.org/10.1016/j.jhydrol.2014.04.066 (2014).
Google Scholar
Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W. & Bonell, M. Rainfall interception by pure and planted forests within the Middle Mountains of Central Nepal. J. Hydrol. 475, 270–280. https://doi.org/10.1016/j.jhydrol.2012.09.051 (2012).
Google Scholar
Pereira, F. L. et al. Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling method. Agric. For. Meteorol. 149, 680–688. https://doi.org/10.1016/j.agrformet.2008.10.014 (2009).
Google Scholar
Pypker, T. G., Bond, B. J., Link, T. E., Marks, D. & Unsworth, M. H. The significance of cover construction in controlling the interception loss of rainfall: Examples from a younger and an old-growth Douglas-fir forest. Agric. For. Meteorol. 130, 113–129. https://doi.org/10.1016/j.agrformet.2005.03.003 (2005).
Google Scholar
Ringgaard, R., Herbst, M. & Friborg, T. Partitioning forest evapotranspiration: Interception evaporation and the influence of cover construction, native and regional advection. J. Hydrol. 517, 677–690. https://doi.org/10.1016/j.jhydrol.2014.06.007 (2014).
Google Scholar
Price, A. G. & Carlyle-Moses, D. E. Measurement and modelling of growing-season cover water fluxes in a mature combined deciduous forest stand, southern Ontario, Canada. Agric. For. Meteorol. 119, 69–85. https://doi.org/10.1016/S0168-1923(03)00117-5 (2003).
Google Scholar
Fathizadeh, O., Hosseini, S. M., Zimmermann, A., Keim, R. F. & Darvishi Boloorani, A. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601–602, 1824–1837. https://doi.org/10.1016/j.scitotenv.2017.05.233 (2017).
Google Scholar
Livesley, S. J., Baudinette, B. & Glover, D. Rainfall interception and stem stream by eucalypt avenue bushes—the impacts of cover density and bark kind. Urban For. Urban Green. 13, 192–197. https://doi.org/10.1016/j.ufug.2013.09.001 (2014).
Google Scholar
Xiao, Q. & McPherson, E. G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 6, 291–302. https://doi.org/10.1023/B:UECO.0000004828.05143.67 (2002).
Google Scholar
Rohatgi, A. InternetPlotDigitizer (4.4), 2020).
Team, R. C. (R Foundation for Statistical Computing, 2020).
García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. PNAS 115, 8400–8405. https://doi.org/10.1073/pnas.1800425115 (2018).
Google Scholar
Le Provost, G. et al. Land-use historical past impacts purposeful range throughout a number of trophic teams. PNAS 117, 1573–1579. https://doi.org/10.1073/pnas.1910023117 (2020).
Google Scholar
El Kateb, H., Zhang, H., Zhang, P. & Mosandl, R. Soil erosion and floor runoff on completely different vegetation covers and slope gradients: A area experiment in Southern Shaanxi Province, China. CATENA 105, 1–10. https://doi.org/10.1016/j.catena.2012.12.012 (2013).
Google Scholar
Oliveira, P. T. S. et al. The water stability parts of undisturbed tropical woodlands within the Brazilian cerrado. Hydrol. Earth Syst. Sci. 19, 2899–2910. https://doi.org/10.5194/hess-19-2899-2015 (2014).
Google Scholar
Hümann, M. et al. Identification of runoff processes – The influence of completely different forest sorts and soil properties on runoff formation and floods. J. Hydrol. 409, 637–649. https://doi.org/10.1016/j.jhydrol.2011.08.067 (2011).
Google Scholar
Sun, D. et al. Soil erosion and water retention varies with plantation kind and age. For. Ecol. Manage. 422, 1–10. https://doi.org/10.1016/j.foreco.2018.03.048 (2018).
Google Scholar
Jost, G., Schume, H., Hager, H., Markart, G. & Kohl, B. A hillslope scale comparability of tree species affect on soil moisture dynamics and runoff processes throughout intense rainfall. J. Hydrol. 420–421, 112–124. https://doi.org/10.1016/j.jhydrol.2011.11.057 (2012).
Google Scholar
Sadeghi, S. M. M., Attarod, P., Van Stan, J. T. & Pypker, T. G. The significance of contemplating rainfall partitioning in afforestation initiatives in semiarid climates: A comparability of widespread planted tree species in Tehran, Iran. Sci. Total Environ. 568, 845–855. https://doi.org/10.1016/j.scitotenv.2016.06.048 (2016).
Google Scholar
Pretzsch, H. et al. Climate change accelerates development of urban bushes in metropolises worldwide. Sci. Rep. https://doi.org/10.1038/s41598-017-14831-w (2017).
Google Scholar
Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic variations and their affect on transpirational cooling of Tilia cordata in two contrasting avenue canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456. https://doi.org/10.1016/j.agrformet.2016.10.006 (2017).
Google Scholar
Nytch, C. J., Meléndez-Ackerman, E. J., Pérez, M. E. & Ortiz-Zayas, J. R. Rainfall interception by six urban bushes in San Juan, Puerto Rico. Urban Ecosyst. 22, 103–115. https://doi.org/10.1007/s11252-018-0768-4 (2018).
Google Scholar
Rahman, M. A. et al. Comparative analysis of shade and underlying surfaces on cooling impact. Urban For. Urban Green. 63, 127223. https://doi.org/10.1016/j.ufug.2021.127223 (2021).
Google Scholar
Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species present the identical hydraulic response to vapor strain deficit throughout various tree dimension and environmental situations. PLoS One https://doi.org/10.1371/journal.pone.0047882 (2012).
Google Scholar
Moser-Reischl, A., Rahman, M. A., Pauleit, S., Pretzsch, H. & Rötzer, T. Growth patterns and results of urban micro-climate on two physiologically contrasting urban tree species. Landsc. Urban Plan. 183, 88–99. https://doi.org/10.1016/j.landurbplan.2018.11.004 (2019).
Google Scholar
Hao, M. et al. Impacts of adjustments in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 9, 8372. https://doi.org/10.1038/s41598-019-44921-w (2019).
Google Scholar
Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban panorama. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009jg001266 (2010).
Google Scholar
Komatsu, H., Kume, T. & Otsuki, Okay. Increasing annual runoff—broadleaf or coniferous forests?. Hydrol. Process. 25, 302–318. https://doi.org/10.1002/hyp.7898 (2011).
Google Scholar
Li, X. et al. Process-based rainfall interception by small bushes in Northern China: The impact of rainfall traits and crown construction traits. Agric. For. Meteorol. 218–219, 65–73. https://doi.org/10.1016/j.agrformet.2015.11.017 (2016).
Google Scholar
Lukaszkiewicz, J. & Kosmala, M. Determining the age of streetside bushes with diameter at breast height-based multifactorial mannequin. Arboricult. Urban For. 34, 137–143. https://doi.org/10.48044/jauf.2008.018 (2008).
Google Scholar
Buttle, J. M. & Farnsworth, A. G. Measurement and modeling of cover water partitioning in a reforested panorama: The Ganaraska Forest, southern Ontario, Canada. J. Hydrol. 466–467, 103–114. https://doi.org/10.1016/j.jhydrol.2012.08.021 (2012).
Google Scholar
Yang, B., Lee, D. Okay., Heo, H. Okay. & Biging, G. The results of tree traits on rainfall interception in urban areas. Landsc. Ecol. Eng. 15, 289–296. https://doi.org/10.1007/s11355-019-00383-w (2019).
Google Scholar
Klamerus-Iwan, A. & Witek, W. Variability within the Wettability and Water Storage Capacity of Common Oak Leaves (Quercus robur L). Water 10, 695. https://doi.org/10.3390/w10060695 (2018).
Google Scholar
Van Stan, J. T., Siegert, C. M., Levia, D. F. & Scheick, C. E. Effects of wind-driven rainfall on stemflow technology between codominant tree species with differing crown traits. Agric. For. Meteorol. 151, 1277–1286. https://doi.org/10.1016/j.agrformet.2011.05.008 (2011).
Google Scholar
Selbig, W. R. et al. Quantifying the stormwater runoff quantity discount advantages of urban avenue tree cover. Sci. Total Environ. 806, 151296. https://doi.org/10.1016/j.scitotenv.2021.151296 (2022).
Google Scholar
Centre for Watershed Protection. Review of the Available Literature and Data on the Runoff and Pollutant Removal Capabilities of Urban Trees (Center for Watershed Protection, 2017).
Berland, A. et al. The position of bushes in urban stormwater management. Landsc. Urban Plan. 162, 167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017 (2017).
Google Scholar
Pauleit, S. Urban avenue tree plantings: Indentifying the important thing necessities. Proc. Inst. Civ. Eng. Municipal Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).
Google Scholar
Weller, M. Tree Inventory Data of Central European Cities—Studies on the Composition and Structure of Urban Tree Populations and Derivation of Ecosystem Services. MSC thesis, Technical University of Munich, Germany (2021).
A comparative analysis of urban forests for storm-water management
A comparative analysis of urban forests for storm-water management
info with out going by means of us first, so we will present you the most recent and best information with out costing you a dime. The two of you could be taught the specifics of the information collectively, providing you with a leg up. We’ll get to the subsequent step when somewhat time has gone.
Our objective is to maintain you recent on all the most recent information from across the globe by posting related articles on our web site, so that you could be all the time be one step forward. In this fashion, you may by no means fall behind the most recent developments in that information.
A comparative analysis of urban forests for storm-water management